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1 Introduction

We have been using cryptography to secure our information throughout the world wide web, where every-

thing and everyone is accessible. When using a social media, such as Facebook, Instagram or Snapchat one

becomes curious how your information is secured or stored. With cyber attacks that can leak information, is

your information safe when its database is leaked? The significance of cryptography was highlighted in the

modern era during World War II, when Alan Turing arguably has single-handedly won the war for his own

country by decrypting the Enigma cipher. However, since then cryptography has evolved significantly. Today,

we mainly use asymmetric encryption, which means that during encryption two different keys are created.

These are called public and private keys. The public key is the encrypting key - it encrypts a message. The

private key, on the other hand, decrypts an encrypted message. Moreover, the main encryption method used

is end-to-end encryption (EE2E) which allows the sender and the receiver to decrypt and encrypt a message.

This is done by the sender generating the encryption key within their own device at that time, whilst the third

party software, for example Whatsapp, has no information on the private key. This theoretically ensures that

companies cannot track your messages, and even if they get hacked with data leaks, it requires decryption.

With the existence and the discovery of such methods of securing data, I became curious on how this process

is done. Like other millions of people, I am a frequent user of the world wide web and the internet, and so it is

only natural for me to be curious what I am using in my everyday life. As a result, I will be looking into one of

the first and most used modern encryptions in the world - Rivest-Shamir-Adlemen (RSA). More specifically,

how is the Rivest-Shamir-Adlemenan cryptography used today to secure information in the world wide web?

1



2 The Purpose of RSA

2.1 Alice and Bob Analogy

1. Suppose that two individuals, Alice and Bob, want to contact each other privately through a long

distance. Alice wants to receive some kind of letter from Bob.

2. In order to do this securely, Alice sends a box which can be locked with a regular lock. However,

when sending, Alice does not send the keys to the lock.

3. Bob then places this letter inside the box and locks it away with the given lock from Alice.

4. Alice receives this box and unlocks it using her key. She then is able to receive this letter safely. That

is, during the process of transferring the box, it is nearly impossible to crack it open.

5. This ”lock” is what we call the public key. The key that she uses to unlock the box is called the

private key. This concept is utilised by the RSA within the process of encryption and decryption of

information in the internet. However, in order to make this method possible within computers, they

had to develop numerical methods, which resulted in the development of trapdoor functions. By

definition, these are functions which are easy to compute, but the reverse computation is much more

difficult. Therefore, in order to encrypt something, information has to go through the trapdoor

function.

This process can be visualised in a simple diagram:

Figure 1: Public Key Encryption Visualisation.
(Göthberg, 2006)
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3 Pre-requisites

In order to begin our exploration, we must first understand some of the required mathematics which is used

in the RSA method. Unfortunately, the Discrete Mathematics option was removed from the IB syllabus so I

will be going through the fundamentals to ensure understanding.

3.1 Definitions

Definition 3.1. Suppose the relation b = ka for k, a, b ∈ Z. Then we can write this as a|b, which means that

b is divisible by a or b is a multiple of a (Fannon, Kadelburg, Woolley, & Ward, 2013, p. 13).

Definition 3.2. The least common multiple c of 2 numbers a, b is denoted as lcm(a, b) = c. By definition,

this is the smallest number c which satisfies a | c and b | c (Fannon et al., 2013, p. 21).

Definition 3.3. The greatest common divisor c of 2 numbers a, b is denoted as gcd(a, b) = c. By definition,

this is the largest number c which satisfies c | a and c | b (Fannon et al., 2013, p. 20).

Definition 3.4. Two numbers a, b are coprime or relatively prime if and only if gcd(a, b) = 1. (Fannon et

al., 2013, p. 20).

3.2 Modular Arithmetic

Modular arithmetic of a number can be seen as the ’remainder’ cycles of a number when it is divided. For

example:

63

4
= 15

3

4
(1)

There’s a remainder 3. Then, the modular arithmetic would be

63 ≡ 3 mod 4 (2)

However, we can apply ”cycles” to it. That is, for each congruent relation, we can add and subtract 4k (where

k is any number such that k ∈ Z) to 3 or 63 and it will still be considered congruent. For example, 67 will

still have remainder 3 and can be expressed as 3 + 4 · 15, in particular this implies k = 15. So then it holds

3



true that

63 ≡ 67 mod 4 (3)

Indeed, this is a result when we add for a positive k. However, we can also subtract by letting k be a negative

integer, and as a result we can also obtain negative congruence relations such as

−3 ≡ 63 mod 4 (4)

And since both−3 and 63 have remainders of 3, we can actually interchange these numbers and congruence

will still hold true.

63 ≡ −3 mod 4 (5)

So then, we can create a generalisation for some a, b, c ∈ Z:

a ≡ b mod c (6)

That is, since a and b differ by some multiple c

a = kc+ b (7)

Where k ∈ Z. As long as these numbers satisfy this equation, then we can say that a is congruent to b modulo

c.

3.3 Euclidean Algorithm

The Euclidean Algorithm (Patrick Keef, n.d.) is an efficient method of finding the greatest common divisor

of two positive integers, let us call them a and b where b 6= a and |b| > |a|. This method uses the division

algorithm, and exploits it until the remainder is zero. The theorem states that if b = ax+ r, then gcd(a, b) =

gcd(b, r). The Euclidean algorithm works by initially dividing b by a and writing it in the form with remainder

r, that is b = ax+ r where x ∈ Z obtaining the form shown above. Then, the process is repeated with new

divisor r and the new dividend is a, obtaining a new remainder. We repeat this process until there is no
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remainder. Particularly, this process can be shown as the following:

b = ax1 + r1 (8)

for some xi where xi ∈ Z, and remainder ri where ri ∈ Z+. Applying the Euclidean Algorithm to compute

gcd(a, b) we do



b = ax1 + r1

a = r1x2 + r2

r1 = r2x3 + r3

...

ri−2 = ri−1xi + ri

ri−1 = rixi+1 + 0

(9)

Where 0 < ri < ri−1. Then, by the Euclidean Algorithm, gcd(a, b) = ri. This allows us to create a strict

recursive formula which can be used within computer science to find the greatest common divisor of two

numbers. This can also be very efficient for numbers a and b whose prime factorisation can be very difficult

if they are large. Let us consider an arbitrary example, that is, gcd(934, 783):



934 = 783 · 1 + 151 (10)

783 = 151 · 5 + 28 (11)

151 = 28 · 5 + 11 (12)

28 = 11 · 2 + 6 (13)

11 = 6 · 1 + 5 (14)

6 = 5 · 1 + 1 (15)

5 = 1 · 5 + 0 (16)

∴ gcd(934, 783) = 1 (17)
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And let us see why this particularly works with the proof of this algorithm.

Proof. (Patrick Keef, n.d.). Suppose that where a > r

a ≡ r mod b (18)

Then, by the definition of modular arithmetic, we could say that

a = bk + r (19)

r = a− bk (20)

where k ∈ Z. Suppose ∃d where d ∈ Z+ such that

d | a (21)

d | b (22)

Which also means that it must divide into

d | a− bk (23)

This implies that it could also divide into the left hand side of equation 20, that is

d | r (24)

Which means that d divides into both b and r. By a similar argument, if d divides into r and b instead, then

by equation 19 it must also divide into the left hand side, that is

d | a (25)

Therefore, if d divides into r and b, then it also divides into b and a. In particular, this d could the greatest

common divisor, thus gcd(a, b) = gcd(r, b).
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3.4 Bézout’s Identity and Extended Euclidean Algorithm

Bézout’s identity (Brilliant.org, n.d.-a) states that ∀a, b, d where a, b, d ∈ Z and gcd(a, b) = d, then ∃x, y

where x, y ∈ Z such that

ax+ by = d (26)

And a solution to Bézout’s identity could be interpreted as a ’reverse’ process of the Euclidean Algorithm

in a sense. This ’reverse’ process is also called the Extended Euclidean Algorithm. It would be best to

demonstrate the reverse process as an example. Let us consider our two arbitrary integers from earlier, i.e.

a = 934 and b = 783. Then, by Bézout’s identity ∃x, y where x, y ∈ Z

934x+ 783y = 1 (27)

And to find a pair of solution we will consider substituting values back from our computation of the greatest

common divisor, beginning with equation 15

6− 1 · 5 = 1 (28)

Substituting in equation 14 for 5

6− 1 · (11− 1 · 6) = 1 (29)

(30)

Expanding and collecting terms

2 · 6− 1 · 11 = 1 (31)

Substituting in equation 13 for 6

2 · (28− 2 · 11)− 1 · 11 = 1 (32)

2 · 28− 5 · 11 = 1 (33)
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And we repeat this process until we can express 28 and 11 in terms of 934 and 783

1 = 2 · 28− 5 · (151− 5 · 28) (34)

1 = 27 · 28− 5 · 151 (35)

1 = 27 · (783− 5 · 151)− 5 · 151 (36)

1 = 27 · 783− 140 · 151 (37)

1 = 27 · 783− 140 · (934− 783) (38)

1 = 167 · 783− 140 · 934 (39)

hence for our example a possible solution is y = 167 and x = −140 by the Extended Euclidean Algorithm.

3.5 The Fundamental Theorem of Arithmetic

Beforing proceeding with the Fundamental Theorem of Arithmetic, we first need to consider the following

lemma:

Lemma 3.1. Euclid’s Lemma. For any two integers b and c, suppose a | bc. Then if a is coprime to c, then

a divides b.

Proof. (Euclid’s Lemma, n.d.). Let

a | bc (40)

Let us assume gcd(a, c) = 1. That is, a - c. By Bézout’s Identity we can write this as

1 = xa+ yc (41)

for some x, y where x, y ∈ Z. Multiplying everything by b

b = bxa+ byc (42)

Notice that a | bxa and a | byc from equation 40. Since a divides into right hand side, then it must also

divide into left hand side, that is

a | bxa+ byc =⇒ a | b (43)

8



The Fundamental Theorem of Arithmetic states that for every integer n which is n > 1 can be factored into

primes and it is unique.

Proof. (Brilliant.org, n.d.-d). We will begin the proof by first showing that ∀n where n ∈ Z, n > 1 can be

factored into primes. By induction, consider base case n = 2. 2 is already a prime, therefore it has been

factored. Assume true for

2, 3, 4, 5, . . . , k (44)

Consider n = k + 1. If k + 1 is prime, then it is already factorised. However, if k + 1 is not a prime then

k + 1 = p ·N for some N < k where N ∈ Z and p where p is the smallest prime factor. By our

assumption, since 1 < N < k, N can be factored into more primes. This implies that k + 1 = p ·N can be

factored into more primes. Therefore, as it holds true for our base case, and when assumed true for some

n = k, it is also follows true for n = k + 1 where k ∈ Z and k > 1. By the principle of mathematical

induction, it follows true ∀n ∈ Z where n > 1.

The second proof will show the uniqueness of this factorisation.

Proof. (Brilliant.org, n.d.-d). Assume that an integer n can be factorised in two different ways, with primes

p and q listed in ascending order that is, p1 ≤ p2 ≤ . . . ≤ pi−1 ≤ pi and q1 ≤ q2 ≤ . . . ≤ qi−1 ≤ qi,

therefore the prime factorisation of n can be written as

n = p1 · p2 · . . . · pi−1 · pi (45)

n = q1 · q2 · . . . · qi−1 · qi (46)

Then, since all primes are coprime with each other, and by Lemma 3.1 we can say that p1 divides into some

number in n where n = q1 · q2 · . . . · qi−1 · qi and since all q are prime, the only way it will divide is if

q1 = p1. Using the same argument for all prime numbers, we can say that ∀i that qi = pi
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3.6 Fermat’s Little Theorem

Fermat’s Little Theorem states that if p is a prime and a is any integer then (Fannon et al., 2013, p. 63)

ap ≡ a mod p (47)

Which is equivalent to saying

p|(ap − a) (48)

And therefore this implies that if p is a prime and a is not a multiple of p, we could divide everything by p

to obtain

ap−1 ≡ 1 mod p (49)

Proof. (Brilliant.org, n.d.-c) Consider the congruence ap ≡ a mod (p)

With base case a = 1, we obtain that

1 ≡ 1 mod p (50)

Which is true for our base case.

Let us assume true for some a = k where k ∈ Z+

kp ≡ k mod p (51)

Let us write this assumption as the following instead for convenience

kp + 1 ≡ k + 1 mod p (52)

Therefore we are looking to show that it holds true for a = k + 1 given the above assumption, more

specifically, we are looking to show that the following equation holds true:

(k + 1)p ≡ k + 1 mod p (53)
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By binomially expanding left hand side we get

(k + 1)p =

p∑
i=0

(
p

i

)
kp−i1i (54)

= kp + pkp−1 +
p(p− 1)

2!
kp−2 + · · ·+ p(p− 1)

2!
k2 + pk + 1 (55)

And by applying modp to equation 55 we notice that all the middle terms cancel as p | p!, leaving us with

kp + 1. However, notice that this is only possible because p - i! and p - (p− i)!. Otherwise, if there existed

a p in the denominator, the p would cancel and thus the final expression would not be divisible by p. Hence,

we obtain

(k + 1)p ≡ kp + 1 mod p (56)

And finally substituting our assumption (equation 52) to equation 56 we show that equation 53 holds true as

well. Therefore we get

(k + 1)p ≡ k + 1 mod p (57)

As it holds true for base step, and when assumed true for some a = k where k ∈ Z+, it holds true for

a = k + 1. Then, by the principle of mathematical induction, the statement holds true for all positive

integers. However, by the definition of modulo, what holds for positive integers will also hold for all

integers. Therefore, it holds true for all integers.
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4 Understanding RSA

4.1 Euler’s Totient Function

Euler’s function is denoted by

ϕ(n) (58)

for some n ∈ Z+, and it counts the amount of coprimes the number n has. That is, it counts the amount of

N which satisfy gcd(N,n) = 1 (Brilliant.org, n.d.-b) where ∀N,N ∈ Z, 1 ≤ N < n. For example,

consider when n = 16:

ϕ(16) (59)

gcd(1, 16) = 1 gcd(5, 16) = 1 gcd(9, 16) = 1 gcd(13, 16) = 1 (60)

gcd(2, 16) = 2 gcd(6, 16) = 2 gcd(10, 16) = 2 gcd(14, 16) = 2 (61)

gcd(3, 16) = 1 gcd(7, 16) = 1 gcd(11, 16) = 1 gcd(15, 16) = 1 (62)

gcd(4, 16) = 4 gcd(8, 16) = 8 gcd(12, 16) = 4 gcd(16, 16) = 16 (63)

Counting the amount of coprimes we get that

ϕ(16) = 8 (64)

From this we could also deduce two identities:

gcd(1, n) ≡ 1 (65)

This implies that all numbers will have at least 1 coprime. And

gcd(n, n) ≡ n (66)

Which implies that no number can ever be established such that ϕ(n) = n except n = 1. However, if our
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number is some prime number p, then it follows that

ϕ(p) = p− 1 (67)

Proof. By Theorem 3.5 all numbers x ≥ 2 where x ∈ Z can be factored into primes. If x is prime, then its

only factor is x. Hence, for all q where 2 ≤ q < p for q ∈ Z can be factored into primes. Moreover, p is

some prime number. This implies that all q can be factored into n arbitrary amount of primes,

a1, a2, . . . , an. Suppose, for a contradiction, that ∃q which has at least p as one of its prime factors,

meaning a1 = p. This implies

q = p · . . . · an (68)

where an ≥ 2

However, as q is a product of p and possibly other primes, then q ≥ p only. This implies q ≮ p. This is a

contradiction.

∴ There is no such q that shares a factor with p

This implies that for all q

gcd(q, p) = 1 (69)

And ∃p− 2 of q numbers from the defined inequality. Recalling that ϕ(n) counts the amount of coprimes

between 1 ≤ N < n means that we are missing the following:

gcd(1, p) = 1 (70)

From our identity in equation 65 and adding this to our count we finally get that

ϕ(p) = p− 1 (71)
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With this unique property, it becomes evident that ϕ(n) can achieve the highest output if n are prime. I

have plotted the Totient function in Wolfram Mathematica so we can see this:

Figure 2: Graph of ϕ(n) for 0 ≤ n ≤ 150.
(self-made figure) (Inc., 2016)

Moreover, there exists an identity that states if p and q are coprime, then

ϕ(pq) ≡ ϕ(p)ϕ(q) (72)

Unfortunately the proof of this multiplicative behaviour is out of the scope of this essay due to ring theory.

And this is the Euler’s Totient function, one of the key components of RSA encryption.
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4.2 Euler’s Theorem

Euler’s Theorem states that if two numbers a and n are coprime, then

aϕ(n) ≡ 1 mod n (73)

Fermat’s Little Theorem is actually a special case of the Euler’s Theorem when n = p for some prime

number p.

Proof. Recall that Fermat’s Little Theorem states that for prime p and p - a we can have

ap−1 ≡ 1 mod p (74)

Recall from equation 71 that

ϕ(p) = p− 1 (75)

Therefore if n = p then we get that by substituting ϕ(p) into equation 73

ap−1 ≡ 1 mod p (76)

Which is Fermat’s Little Theorem.

Moreover, for the proof of Euler’s Theorem, we will first have to define a reduced residue system mod n

Definition 4.1. (Ikenaga, 2019). A reduced residue system mod n is a set A such that

A ∈ {a1, a2, a3, . . . , aϕ(n)} mod n (77)

and if we define a set A where

A ∈ {ai, . . . , aϕ(n)} mod n (78)
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and

A ∈ {aj , . . . , aϕ(n)} mod n (79)

it must follow that, for it to be a reduced residue system, ai 6= aj mod n or i 6= j. That is, the a are unique

in mod n. Another property that must follow true for a set to be a reduced residue system is that ∀i,

gcd(ai, n) = 1 (80)

And this creates a set A such that all remainders of an arithmetic are coprime with n, and they are all

unique, that is, they do not repeat themselves in cycles. In fact, it could be simply thought of a list of

numbers which satisfy Euler’s Totient Function. That is, whilst Euler’s Totient Function counts the amount

of coprimes ∀N between 1 ≤ N < n where N ∈ Z for that particular n, the reduced residue system lists

all N which are coprime.

Let us consider an example of a reduced residue system of mod 16, a number which we have previously

used to compute ϕ(16). Then the set A with mod 16 could be defined as

A ∈ {1, 3, 5, 7, 9, 11, 13, 15} mod 16 (81)

And with the definition of the residue system being unique as stated, this set could also, for example, be

defined as

A ∈ {17,−13, 21, 23, 41,−21,−3, 31} mod 16 (82)

However, the set A cannot be defined as

A ∈ {−15, 17,−13, 21, 23, 41,−21,−3, 31} mod 16 (83)

because −15 and 17 are not unique, that is, they both could be expressed as 1 ≡ mod16. Moreover, an

interesting property is ∀m where m ∈ Z such that gcd(m,n) = 1, the set A for

A ∈ {mai, . . . ,maϕ(n)} mod n (84)
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is still a reduced residue system. The formal proof of this property is beyond the scope of this Extended

Essay. Knowing these facts, we can proceed to the proof of Euler’s Theorem.

Proof. (Ikenaga, 2019). Let the set A be a reduced residue system such that

A ∈ {a1, . . . , aϕ(n)} mod n (85)

And we know that if gcd(m,n) = 1 then we also have a reduced residue system such that

A ∈ {ma1, . . . ,maϕ(n)} mod n (86)

Since these are still reduced residue sets of mod n, we can in fact create an equivalence relation where

ma1 · . . . ·maϕ(n) ≡ a1 · . . . · aϕ(n) mod n (87)

(88)

Factoring out m, knowing that m exists ϕ(n) times

mϕ(n)(a1 · . . . · aϕ(n)) ≡ a1 · . . . · aϕ(n) mod n (89)

(90)

And dividing everything by a1 · . . . · aϕ(n)

mϕ(n) ≡ 1 mod n (91)

Which is Euler’s Theorem.

4.3 RSA Encryption Process

RSA exploits the idea that it is very difficult to factorise numbers into their respective primes. Because

there is no clear method, a computer has to do a large amount of computations in order to figure out what

the prime factors are of a number. When numbers get very large, this becomes a very tedious and a very

long process. This is called time complexity, and is in fact a huge study of Computer Science. However,
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for this extended essay, we will just be using the idea that the larger the number in bits, the significantly

harder it becomes to factor it into its primes. The RSA Laboratories has even given a list of numbers which

are a product of two primes, and made it a public challenge to factorise them in 1991 (RSA numbers, n.d.).

For example, the 232 digit number which was factored in 2009 is estimated to take 2000 years to factor in

an old processor (Kleinjung et al., 2010, p. 14). However, they were able to cut the time by using various

special algorithms designed for those particular numbers. The trapdoor function of RSA is then clear, the

utilisation of the product of primes.

1. Therefore, to see this process (Mollin, 2002, p.60-63), we begin with picking 2 distinct random

primes, let us denote them p and q. Let us denote the product of these 2 numbers as n.

pq = n (92)

And thus it follows that

ϕ(n) = (p− 1)(q − 1) (93)

2. We select some number e which will denote the encryption key where e ∈ N, 1 < e < ϕ(n) and

gcd(e, ϕ(n)) = 1. We will also select some number d where 1 < d < ϕ(n) and d ∈ N which is the

decryption key, that must satisfy

ed ≡ 1 mod ϕ(n) (94)

3. The public encryption key e and n is then published to the public for encryption. In order to encrypt

a message with ciphertext M where M < n into encrypted message C, we must use the following

relation

C ≡M e mod n (95)
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4. And if receiving the message to decrypt the ciphertext C we must use the following equivalence

relation

Cd ≡M mod n (96)

Now let us consider an example using American Standard Code for Information Interchange (ASCII).

ASCII Decimals allow us to code characters of computers in numbers. To see which printable characters

correspond to numbers see Appendix A. For example, we will encrypt the word ”egg”. This translates into

the following using ASCII:

101103103 (97)

Now picking 2 prime numbers, let

p = 77773, q = 83339 (98)

∴ n = 6481524047 (99)

∴ ϕ(6481524047) = 77772 · 83338 (100)

ϕ(6481524047) = 6481362936 (101)

Now we pick e which satisfies gcd(e, 6481362936) = 1. Let e = 257, d then must satisfy

257d ≡ 1 mod 6481362936 (102)

This could be written using the definition of modulo for some k ∈ Z

257d+ 6481362936k = 1 (103)

This equation could in fact be solved by the Extended Euclidean Algorithm as we have done in our example,

however, since the number is too large we will use technology to find the value of d (see Appendix B for the
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python code). This obtains us d = 1437500729. Thus we can now encrypt our message using our e value

2005725653 ≡ 101103103257 mod 6481524047 (104)

And now we can decrypt this using our value of d

20057256531437500729 ≡ 101103103 mod 6481524047 (105)

Which indeed translates back into ”egg”. And as such, it is possible to see how things are encrypted and

decrypted. Now let us see why this mathematically works.

4.4 Mathematics of RSA

Let us see how and why the RSA works mathematically by utilising Fermat’s Little Theorem as well as

Euler’s theorem for two special cases of M and n. First, we will consider when our M is coprime with n.

Proof. (Ireland, 2002). As defined, we know

ed ≡ 1 mod ϕ(n) (106)

Rewriting this using the definition of modular arithmetic

ed = kϕ(n) + 1 (107)

We also know that

C ≡M e mod n (108)

Raising everything to the power of d we obtain

Cd ≡M ed mod n (109)
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And if we substitute our equation 107 for ed into 109 we get

Cd ≡Mkϕ(n)+1 mod n (110)

Cd ≡M(Mϕ(n)k) mod n (111)

We know gcd(M,n) = 1. Then, by Euler’s Theorem, we can obtain Mϕ(n) ≡ 1 mod n and

Mϕ(n)k ≡ 1k mod n. Thus we obtain after applying this to the top equation

Cd ≡M(1k) mod n (112)

Cd ≡M mod n (113)

for our unique M .

However, what if our M is not coprime with one of our prime numbers, let us say q? Then we could

consider the following:

Proof. (Ireland, 2002). Let us assume that our number q divides into M , that is q |M , therefore by the

definition of modular arithmetic we have

0 ≡M mod q (114)

Raising everything to the power of 1 + kϕ(n) where k is some integer such that k ∈ Z we get

01+kϕ(n) ≡M1+kϕ(n) mod q (115)

0 ≡M1+kϕ(n) mod q (116)

And since 0 is congruent to M mod q as defined, then

M ≡M1+kϕ(n) mod q (117)

One of the main properties of RSA is that M < n. Since p and q are distinct primes, we can deduce that

p - q. Moreover, since the product pq = n, we can say that if q |M , then p -M . This also implies that
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gcd(M,p) = 1, therefore by Fermat’s Little Theorem we could say that

Mp ≡M mod p (118)

Dividing by M we obtain

Mp−1 ≡ 1 mod p (119)

Let us now raise everything to the power of q − 1

M (p−1)(q−1) ≡ 1q−1 mod p (120)

M (p−1)(q−1) ≡ 1 mod p (121)

Particularly, we know that the power is in fact the definition of ϕ(n)

Mϕ(n) ≡ 1 mod p (122)

And we if we raise this to the power of k where k is some number such that k ∈ Z

Mkϕ(n) ≡ 1k mod p (123)

Mkϕ(n) ≡ 1 mod p (124)

Multiplying everything by M we get

M1+kϕ(n) ≡M mod p (125)

And thus we get that


M1+kϕ(n) ≡M mod p

M1+kϕ(n) ≡M mod q

(126)

From the definition of the modular arithmetic we could derive that p |M1+kϕ(n) −M and
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q |M1+kϕ(n) −M , we then could indeed say that pq |M1+kϕ(n) −M as the dividend’s prime

factorisation must then at least consist of the primes p and q. Using this argument we could express this as

M1+kϕ(n) ≡M mod pq (127)

And since pq = n, then

M1+kϕ(n) ≡M mod n (128)

From the definition of ed in RSA, we have

ed ≡ 1 mod ϕ(n) (129)

Which by the definition of the arithmetic modulo we could express it as

ed = 1 + kϕ(n) (130)

for k ∈ Z. And in particularly, if we define our encrypted message C to be

C ≡M e mod n (131)

If we raise everything to the power of d, then

Cd ≡M ed mod n (132)

Then, if we substitute equation 130 into equation 128 we get

M ed ≡M mod n (133)

And indeed, from congruence relations of equations 132 and 133, we obtain

Cd ≡M mod n (134)
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for our unique M .

Both of these proofs show the correctness of RSA, that is, our encryption and decryption are unique within

our process, exposing RSA’s mathematical secrets utilising theorems which were originally used to create

this encryption process.

5 Conclusion

Indeed, it seems that the Rivest-Shamir-Adleman method is a very clever manipulation of various theorems

in order to derive unique integers C and M from the public and the private key e and d respectively. By

utilising number theory in the most creative ways, Rivest, Shamir and Adleman came up with one of the

most commonly used mathematical algorithms globally. Whilst RSA is one of the most prevalent

cryptographical methods used today within the world wide web, it is important to note that many new

cryptographical methods were developed since then. For example, one of the newest developed methods is

Elliptic Cryptograhy, which is commonly used in cryptocurrency such as Bitcoin. In fact, Elliptic

Cryptography is harder to decrypt, and contradictingly to what one would think, it takes less memory to

encrypt and decrypt using this method. It would be interesting to see as to how this cryptographical method

works. Nevertheless, RSA is still one of the easiest methods to implement within the universe of Computer

Science. It was wonderful to see how each block of mathematics leads to harder and steeper steps, which

was especially evident with RSA, given that each theory is derived from another fundamental theory (or as

some refer to such ’supporting theories’, a lemma). However, whilst computers today do struggle to

factorise large numbers to their prime numbers, this may become irrelevant in the future. It is important to

note that with the introduction of quantum computers, factorisation of numbers into their primes will

become almost instantaneous, rendering this particular cryptographical method useless. As such, it is also

important to find more complex cryptographical methods which can still appeal to a larger O(n) for

quantum computers - an intriguing field of study. Today, a regular desktop computer would take 6.4

quadrillion years (Thakkar, 2018) to crack a 2048-bit RSA private key! It seems that information on the

internet is indeed secure, as the complexity of decrypting RSA is high. Whilst a 2048-bit RSA private key

is not commonly used within the world wide web, today’s computers are still struggling in decrypting the

RSA efficiently. Moreover, the era of quantum computers is afar and as a result the RSA should suffice for a

long period of time that is to come before quantum computers are properly introduced for public use.
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Appendices

A ASCII Table

(ASCII Table – Printable Characters, n.d.)
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B Python Code

(Algorithm Implementation/Mathematics/Extended Euclidean algorithm, n.d.)

d e f egcd ( a , b ) :

i f a == 0 :

r e t u r n ( b , 0 , 1 )

e l s e :

g , y , x = egcd ( b % a , a )

r e t u r n ( g , x − ( b / / a ) ∗ y , y )

de f modinv ( a , m) :

g , x , y = egcd ( a , m)

i f g != 1 :

r a i s e Excep t i on ( ’ modular i n v e r s e does no t e x i s t ’ )

e l s e :

r e t u r n x % m

p r i n t ( modinv (257 ,6481362936 ) )
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